聯絡服務專員 Todd Ting:09:00~18:00 (GMT+8)

Biomaterials & Scaffolds 生物材料與再生支架

1. Definition & Classification

Biomaterials are materials used in medical devices or implants that are biocompatible and non-toxic; scaffolds are three-dimensional structures made from biomaterials that mimic the extracellular matrix, supporting cell attachment, proliferation, and differentiation, and are eventually degraded or absorbed as new tissue forms .

2. Skin & Soft Tissue Repair

  • Endoform™ Ovine Forestomach Matrix Dermal Template
    A decellularized ovine forestomach membrane is used to treat acute and chronic wounds, including diabetic foot ulcers and venous leg ulcers. Clinical studies show it accelerates wound healing and provides excellent biocompatibility and regenerative support in hard-to-heal wounds.

3. Bone Tissue Regeneration

  • Polymer–Ceramic Composite Scaffolds
    Degradable polymers (e.g., PCL, PLA/PLGA) combined with inorganic ceramics (e.g., hydroxyapatite, β-TCP) are used to repair bone defects. These scaffolds provide mechanical strength and a porous structure that promotes osteoblast adhesion and differentiation, are then replaced by native bone.

4. Cartilage Repair

  • MACI® (Matrix-Induced Autologous Chondrocyte Implantation)
    Autologous chondrocytes are expanded and seeded onto a collagen membrane scaffold to repair full-thickness cartilage defects in the knee. Since FDA approval, numerous clinical studies have demonstrated significant improvements in patient function and pain.

5. Cardiovascular Applications

  • Bioresorbable Vascular Scaffolds
    Polymer- or composite-based coronary scaffolds that gradually degrade after restoring vessel patency, reducing the long-term risks associated with permanent metal stents.

  • Laboratory-Grown Vessels (Humacyte)
    Human vascular cells are cultured on a degradable scaffold to form a decellularized vessel. Early clinical trials in dialysis access and traumatic vascular repair are underway.

6. Nerve Regeneration

  • Nerve Conduits
    Degradable polymer or collagen conduits are used to bridge peripheral nerve gaps, guiding axonal regrowth. Clinically applied for small-gap repairs such as digital and ulnar nerve reconstruction.

7. Heart Valves & Urinary System

  • Tissue-Engineered Heart Valves (TEHV)
    Biodegradable scaffolds seeded with autologous cells, designed to form living, remodeling valves in situ. Currently in preclinical development.

  • Bioengineered Bladders
    Degradable polymer scaffolds combined with autologous urothelial and smooth muscle cells for bladder reconstruction. Case reports show long-term tissue integration and functional recovery.

Summary & Outlook

Clinically, biomaterials and scaffolds are used across skin, bone, cartilage, cardiovascular, nerve, and urinary applications. With advances in smart drug-releasing materials, 3D/4D printing, and extracellular vesicle technologies, future scaffolds will become more functional, personalized, and controllable—paving the way for regeneration of increasingly complex organs.

1. 定義與分類

生物材料(Biomaterials)是用於醫療器械或植入物、能與生物系統相容且不產生毒性的材料;再生支架(Scaffolds)則是由生物材料製成,模擬細胞外基質的三維結構,支撐細胞黏附、增殖與分化,最終隨著組織再生被降解或吸收。

2. 皮膚與軟組織修復

  • Endoform™ 羊胃基質修復膜
    去細胞化的羊胃基質(Ovine Forestomach Matrix, OFM)製成的單層膜,用於治療急慢性傷口,包括糖尿病足潰瘍與靜脈性潰瘍。臨床研究顯示,此膜能加速傷口癒合,並在難治性創面中提供優異的生物相容性與再生促進效果。

3. 骨組織再生

  • 聚合物與陶瓷基支架
    可降解聚合物(如聚己內酯 PCL、PLA/PLGA)及無機陶瓷(如羥基磷灰石 HA、三鈣磷酸鹽 β-TCP)支架廣泛用於修復骨缺損。這些支架提供足夠的機械強度與孔隙結構,促進骨細胞黏附與分化,最終被宿主組織取代。

4. 軟骨修復

  • MACI®(Matrix-Induced Autologous Chondrocyte Implantation)
    自體擴增軟骨細胞載於膠原膜支架,針對膝關節全層軟骨缺損進行修復。FDA 批准後,已在多項臨床研究中證實可顯著改善患者功能與疼痛。

5. 心血管應用

  • 可吸收血管支架(Bioresorbable Vascular Scaffold)
    以聚合物或複合材料製成的可降解冠狀動脈支架,在恢復血管通暢後逐漸分解,減少長期金屬殘留併發症的風險。

  • 離體培養血管(Humacyte)
    人體源性血管細胞於可降解支架上培養形成「去細胞」血管,已進入透析通路與外傷血管重建之早期臨床試驗階段。

6. 神經再生

  • 神經導管(Nerve Conduits)
    由可降解聚合物或膠原蛋白製成的導管,用於周邊神經缺損修復,引導神經纖維再生。臨床上,這類產品已應用於手指神經與尺神經等小段缺損重建。

7. 心臟瓣膜與泌尿系統

  • 組織工程化心臟瓣膜(TEHV)
    利用生物可降解支架結合患者自體細胞,目標在體內原位形成可生長、可重塑的活體心瓣膜,目前仍以臨床前研究為主。

  • 生物工程膀胱
    結合可降解聚合物支架與自體尿路上皮/平滑肌細胞,用於重建膀胱,已有個案報告顯示長期組織整合與功能恢復。

小結與展望

臨床上,生物材料與支架的應用已覆蓋皮膚、骨骼、軟骨、心血管、神經及泌尿等多種組織。隨著智能材料(如可調釋藥物支架)、3D/4D 列印與細胞外囊泡等技術的發展,未來支架將更具功能化、個人化與可調控性,有望實現更複雜器官的再生與修復。